communications-mining
latest
false
UiPath logo, featuring letters U and I in white

Communications Mining User Guide

Last updated Dec 20, 2024

Labels (predictions, confidence levels, hierarchy, etc.)

A label is a structured summary of an intent or concept expressed within a message. A message is often summarised by multiple labels - i.e. a label isn't a mutually exclusive classification of the message.

As an example, in a dataset monitoring the customer experience we might create a label called ‘Incorrect Invoice Notification’, which describes when a customer is informing the business that they’ve received what they believe is an incorrect invoice.

Label creation and editing actions are primarily performed in the Explore and Discover pages.

Pinned vs. Predicted

Labels are initially created by users by applying one to a relevant message. Users can continue to apply them to build up training examples for the model, and the platform will then start to automatically predict the label across the dataset where it's relevant.

A label that has been applied by a user to a message is considered 'pinned', whereas those that the platform assigns to messages are known as label predictions. For more detail, see here to learn about reviewed and unreviewed messages.

Confidence levels

When the platform predicts whether a label applies to a message that has not been reviewed by a user, it provides a confidence level (%) for that label prediction. The higher the confidence level, the more confident the platform is that the label applies.

An email sent to an insurance underwriting mailbox with multiple labels predicted

Labels are shaded by the confidence level that the platform has in the predicted labels. The more opaque the label, the higher the platform's confidence is that the label applies.

Label hierarchy

Labels can be organised in a hierarchical structure to help you organise and train new concepts more quickly.

This hierarchy takes a format like this: [Parent label] > [Branch label 1] > [Branch label n] > [Child label]

A label can be a standalone parent label, or have branch and child labels (separated by '>') that form subsets of the previous labels in the hierarchy.

Any time a child label or branch label is pinned or predicted, the model considers the previous levels in the hierarchy to have been pinned or predicted too. Predictions for parent labels will typically have higher confidence levels than the lower levels of the hierarchy, as they're often easier to identify.

To see more about label hierarchies, see here.

Label sentiment

For datasets with sentiment analysis enabled, every label (both pinned and predicted) has an associated positive or negative sentiment indicated by a green or red colour (such as the positive sentiment predictions below).

Different levels of a label hierarchy can have different sentiment predictions - e.g. a review could be overall positive about a 'Property' but be negative about the 'Property > Location'.

A hotel review showing multiple label predictions that have positive sentiment

Was this page helpful?

Get The Help You Need
Learning RPA - Automation Courses
UiPath Community Forum
Uipath Logo White
Trust and Security
© 2005-2025 UiPath. All rights reserved.