communications-mining
latest
false
Communications Mining User Guide
Last updated Nov 7, 2024

Concept drift

In predictive analytics and machine learning, the term 'concept drift' (or 'data drift') means that the properties of the target variables (i.e. the themes and concepts underlying each of the labels), that the model is trying to predict, change over time in unforeseen ways.

Essentially, more recent data coming into the dataset will, over time, become increasingly different to the original data on which the model was trained.

This causes problems because the predictions become less accurate as time passes and the variables that the model is trying to predict become increasingly different to the training data.

Concept drift is one of the key reasons why it's important to properly maintain Models used in production use-cases, e.g. automations, by doing a small amount of exception training on a scheduled basis.

Was this page helpful?

Get The Help You Need
Learning RPA - Automation Courses
UiPath Community Forum
Uipath Logo White
Trust and Security
© 2005-2024 UiPath. All rights reserved.